Bi-modal Face Recognition - How combining 2D and 3D Clues Can Increase the Precision

نویسندگان

  • Amel Aissaoui
  • Jean Martinet
چکیده

This paper introduces a bi-modal face recognition approach. The objective is to study how combining depth and intensity information can increase face recognition precision. In the proposed approach, local features based on LBP (Local Binary Pattern) and DLBP (Depth Local Binary Pattern) are extracted from intensity and depth images respectively. Our approach combines the results of classifiers trained on extracted intensity and depth cues in order to identify faces. Experiments are performed on three datasets: Texas 3D face dataset, BOSPHORUS 3D face dataset and FRGC 3D face dataset. The obtained results demonstrate the enhanced performance of the proposed method compared to mono-modal (2D or 3D) face recognition. Most processes of the proposed system are performed automatically. It leads to a potential prototype of face recognition using the latest RGB-D sensors, such as Microsoft Kinect or Intel RealSense 3D Camera.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Learning to Fuse 3D+2D Based Face Recognition at Both Feature and Decision Levels

2D intensity images and 3D shape models are both useful for face recognition, but in different ways. While algorithms have long been developed using 2D or 3D data, recently has seen work on combining both into multi-modal face biometrics to achieve higher performance. However, the fusion of the two modalities has mostly been at the decision level, based on scores obtained from independent 2D an...

متن کامل

Multi-Modal 2D and 3D Biometrics for Face Recognition

Results are presented for the largest experimental study to date that investigates the comparison and combination of 2D and 3D face data for biometric recognition. To our knowledge, this is also the only such study to incorporate significant time lapse between gallery and probe image acquisition. Recognition results are presented for gallery and probe datasets of 166 subjects imaged in both 2D ...

متن کامل

A Feature-level Fusion of Appearance and Passive Depth Information for Face Recognition

Face recognition using 2D intensity/colour images have been extensively researched over the past two decades (Zhao et al., 2003). More recently, some in-roads into 3D recognition have been investigated by others (Bowyer et al., 2006). However, both the 2D and 3D face recognition paradigm have their respective strengths and weaknesses. 2D face recognition methods suffer from variability in pose ...

متن کامل

Processing and analysis of 2.5D face models for non-rigid mapping based face recognition using differential geometry tools

This Ph.D thesis work is dedicated to 3D facial surface analysis, processing as well as to the newly proposed 3D face recognition modality, which is based on mapping techniques. Facial surface processing and analysis is one of the most important steps for 3D face recognition algorithms. Automatic anthropometric facial features localization also plays an important role for face localization, fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015